Computation of central values of L-functions

Zhengyu Mao

Rutgers - Newark

08/24/2012 at Jeju

• • = • • = •

æ

The Problem

Let $f(z) = \sum_{n=1}^{\infty} a_n e(nz)$ be a new form of weight 2k, $(e(z) := e^{2\pi i z})$ *D* a fundamental discriminant, Define

$$L(f, D, s) := \sum_{n=1}^{\infty} \frac{a_n}{n^s} \left(\frac{D}{n}\right).$$

(ロ) (同) (E) (E) (E)

Let $f(z) = \sum_{n=1}^{\infty} a_n e(nz)$ be a new form of weight 2k, $(e(z) := e^{2\pi i z})$ *D* a fundamental discriminant, Define

$$L(f, D, s) := \sum_{n=1}^{\infty} \frac{a_n}{n^s} \left(\frac{D}{n}\right)$$

Function equation: $L(f, D, s) \leftrightarrow L(f, D, 2k - s)$. We are interested in computing the values L(f, D, k).

高 とう モン・ く ヨ と

Let $f(z) = \sum_{n=1}^{\infty} a_n e(nz)$ be a new form of weight 2k, $(e(z) := e^{2\pi i z})$ *D* a fundamental discriminant, Define

$$L(f, D, s) := \sum_{n=1}^{\infty} \frac{a_n}{n^s} \left(\frac{D}{n}\right)$$

Function equation: $L(f, D, s) \leftrightarrow L(f, D, 2k - s)$. We are interested in computing the values L(f, D, k). Possible method: use approximate function equation–estimation by a finite sum.

高 とう モン・ く ヨ と

Let $f(z) = \sum_{n=1}^{\infty} a_n e(nz)$ be a new form of weight 2k, $(e(z) := e^{2\pi i z})$ *D* a fundamental discriminant, Define

$$L(f, D, s) := \sum_{n=1}^{\infty} \frac{a_n}{n^s} \left(\frac{D}{n}\right)$$

Function equation: $L(f, D, s) \leftrightarrow L(f, D, 2k - s)$. We are interested in computing the values L(f, D, k). Possible method: use approximate function equation–estimation by a finite sum. There is more efficient method in this case.

高 とう モン・ く ヨ と

The method discussed here is through Shimura correspondence.

 $f(z) \leftrightarrow g(z) = \sum_{n=1}^{\infty} c(n)e(nz)$ a weight $k + \frac{1}{2}$ cusp form.

向下 イヨト イヨト ニヨ

The method discussed here is through Shimura correspondence.

 $f(z) \leftrightarrow g(z) = \sum_{n=1}^{\infty} c(n)e(nz)$ a weight $k + \frac{1}{2}$ cusp form. Waldspurger: there is a relation between L(f, D, k) from c(|D|).

э

The method discussed here is through Shimura correspondence.

 $f(z) \leftrightarrow g(z) = \sum_{n=1}^{\infty} c(n)e(nz)$ a weight $k + \frac{1}{2}$ cusp form. Waldspurger: there is a relation between L(f, D, k) from c(|D|).

The question becomes:

- explicate the relation.
- compute c(n).

• • = • • = •

Kohnen-Zagier Formula

Explicit relation between *L*-value and Fourier coefficient Assume *f* is of level *N* odd and square free. Then there is a unique (up to multiple) *g* of level 4*N*, in the Kohnen space (meaning c(n) = 0 if $(-1)^k n \equiv 2, 3 \mod 4$), satisfying ($p \not| N$) $T_{p^2}g/g = (\frac{(-1)^k}{p})T_p f/f$. Moreover when $(-1)^k D > 0$ and $(\frac{D}{p}) = w_p = \pm 1$ the

eigenvalue for Atkin-Lerner involution:

$$\kappa \frac{|c(|D|)|^2}{\langle g,g\rangle} = \frac{L(f,D,k)}{\langle f,f\rangle} |D|^{k-1/2} \frac{(k-1)!}{\pi^k}.$$

where $\kappa = 2^{-\nu(N)}$, $\nu(N)$ being number of prime factors of N. Remark: When k = 1, N = p odd, the formula gives a relation for all D < 0 such that (p, D) = 1. Gross's construction of g(z) when k = 1, N = p odd

御 と く き と く き と

Gross's construction of g(z) when k = 1, N = p odd

- B: quaternion algebra ramified at ∞ and p.
- R: fixed maximal order
- I_i : representative of right ideal classes.

Construction of $\Theta_1[I_i]$:

• • = • • = •

Gross's construction of g(z) when k = 1, N = p odd

B: quaternion algebra ramified at ∞ and p.

R: fixed maximal order

 I_i : representative of right ideal classes.

Construction of $\Theta_1[I_i]$:

$$R_i \text{ left order of } I_i: \{b: bI_i \subset I_i\}.$$

$$\begin{aligned} S_i^s &= \{ b \in \mathbb{Z} + 2R_i : \text{ If } b = 0 \} \\ \Theta_1[I_i] &:= \frac{1}{2} \sum_{b \in S_i^o} e(\mathcal{N}b z). \end{aligned}$$

These are weight 3/2 forms of level 4p. The Fourier coefficients of theta series are easy to compute. (They are integers).

Jacquet-Langlands correspondence: $f \mapsto e_f$ a function on $B^*(\mathbb{Q}) \setminus B^*(\mathbb{A}_{\mathbb{Q}}) / B^*_{\infty} R^*(\mathbb{Q}_f)$. e_f can be considered as a function $e_f[I_i]$.

伺下 イヨト イヨト

 e_f can be considered as a function $e_f[I_i]$.

When $L(f, 1, 1) \neq 0$, $g(z) = \sum_{i} \Theta_{1}[I_{i}]e_{f}[I_{i}]$.

向下 イヨト イヨト

 e_f can be considered as a function $e_f[I_i]$. When $L(f, 1, 1) \neq 0$, $g(z) = \sum_i \Theta_1[I_i]e_f[I_i]$. (When L(f, 1, 1) = 0 the above sum vanishes).

伺下 イヨト イヨト

 e_f can be considered as a function $e_f[I_i]$. When $L(f, 1, 1) \neq 0$, $g(z) = \sum_i \Theta_1[I_i]e_f[I_i]$. (When L(f, 1, 1) = 0 the above sum vanishes). Gross: (when D < 0 and (D, p) = 1)

$$L(f,1,1)L(f,D,1) = \frac{\langle f,f \rangle}{\langle e_f,e_f \rangle} \frac{|c(|D|)|^2}{\sqrt{|D|}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ……

 e_f can be considered as a function $e_f[I_i]$. When $L(f, 1, 1) \neq 0$, $g(z) = \sum_i \Theta_1[I_i]e_f[I_i]$. (When L(f, 1, 1) = 0 the above sum vanishes). Gross: (when D < 0 and (D, p) = 1)

$$L(f,1,1)L(f,D,1) = \frac{\langle f,f \rangle}{\langle e_f,e_f \rangle} \frac{|c(|D|)|^2}{\sqrt{|D|}}$$

Gross's construction computes L(f, D, 1) when $L(f, 1, 1) \neq 0$ and D < 0 with (D, p) = 1.

向下 イヨト イヨト

Brandt matrices:

Let $M_{ij} = I_i I_j^{-1} = \{\sum a_k b_k | a_k \in I_i, b_k \in I_j^{-1}\}$. Then M_{ij} is a right ideal of R_j whose left order is R_i . Let $\mathcal{N}M_{ij}$ be the positive greatest common divisor of $\{\mathcal{N}b | b \in M_{ij}\}$.

Define theta series (q := e(z))

$$f_{ij}(z) = rac{1}{2w_j} \sum_{b \in M_{ij}} q^{\mathcal{N}b/\mathcal{N}M_{ij}} = rac{1}{2} \sum_{m \geq 0} B_{ij}(m)q^n.$$

Here $2w_j$ is number of units in R_j^* .

ヨット イヨット イヨッ

Then the Fourier coefficients $B_{ij}(m)$ give the entries of the Brandt matrix of degree *m*:

$$B(m):=(B_{ij}(m))_{1\leq i,j\leq n}.$$

(entries are integers)

• • = • • = •

æ

Then the Fourier coefficients $B_{ij}(m)$ give the entries of the Brandt matrix of degree *m*:

$$B(m):=(B_{ij}(m))_{1\leq i,j\leq n}.$$

(entries are integers) e_f is a common eigenvector of B(m) with $B(l)e_f/e_f = T(l)f/f$.

ヨット イヨット イヨッ

Then the Fourier coefficients $B_{ij}(m)$ give the entries of the Brandt matrix of degree *m*:

$$B(m) := (B_{ij}(m))_{1 \leq i,j \leq n}.$$

(entries are integers) e_f is a common eigenvector of B(m) with $B(I)e_f/e_f = T(I)f/f$. Remark: can write f as a linear combination of theta series using this procedure.

• • = • • = •

Theta correspondence

Gross's construction, another description: $f \stackrel{J-L}{\rightarrow} e_f$ is a theta correspondence between $GL_2 = GSp_2$ and $B^* \times B^* = GO(4)$ (Shimizu correspondence) $e_f \mapsto \Theta(e_f)$ is a theta correspondence between $PB^* = O(3)$ and \overline{SL}_2 . (Waldspurger)

Theta correspondence

Gross's construction, another description:

 $f \xrightarrow{J-L} e_f$ is a theta correspondence between $GL_2 = GSp_2$ and $B^* \times B^* = GO(4)$ (Shimizu correspondence) $e_f \mapsto \Theta(e_f)$ is a theta correspondence between $PB^* = O(3)$

and \overline{SL}_2 . (Waldspurger)

 $\psi :$ nontrivial character of $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q}$ _

 ω_{ψ} : Weil representation of $PB^* \times \overline{SL}_2$ acting on $\mathcal{S}(B^0)$. (B^0 the set of elements in B with trace 0).

For $\phi \in \mathcal{S}(B^0)$, $b \in PB^*$, $\sigma \in \overline{SL}_2$:

$$heta(b,\sigma;\phi,\psi) = \sum_{\mathsf{x}\in B^0(\mathbb{Q})} \omega_\psi(b,\sigma) \phi(\mathsf{x}).$$

Then for some choice of ϕ

$$\Theta(e_f) = \Theta(e_f, \phi, \psi) = \int_{PB^*(\mathbb{Q}) \setminus PB^*(\mathbb{A}_\mathbb{Q})} e_f(b) \theta(b, ; \phi, \psi) db.$$

Choice of $\phi: \phi = \otimes \phi_v$ as follows • At $v \neq 2, \infty, \phi_v$ is the characteristic function of $B^0(\mathbb{Q}_v) \cap R_v$. • At $v = \infty, \phi_\infty(b) = e^{-\pi N b}$. • At $v = 2, \phi_2$ is the characteristic function of $(1 + 2 * GL_2(\mathbb{Z}_2)) \cap B^0(\mathbb{Q}_2)$.

伺下 イヨト イヨト

Waldspurger: If $\pi \leftrightarrow f$, then $\theta(JL(\pi), \psi) \neq 0$ if and only if $L(f, 1, 1) \neq 0$. In particular if L(f, 1, 1) = 0, the above construction fails to give g(z).

Waldspurger: If $\pi \leftrightarrow f$, then $\theta(JL(\pi), \psi) \neq 0$ if and only if $L(f, 1, 1) \neq 0$. In particular if L(f, 1, 1) = 0, the above construction fails to give g(z). Goal: generalize this to cases D > 0 or p|D or L(f, 1, 1) = 0.

通 と く ヨ と く ヨ と

Waldspurger: If $\pi \leftrightarrow f$, then $\theta(JL(\pi), \psi) \neq 0$ if and only if $L(f, 1, 1) \neq 0$. In particular if L(f, 1, 1) = 0, the above construction fails to give g(z). Goal: generalize this to cases D > 0 or p|D or L(f, 1, 1) = 0. Remark: there is also a theta correspondence $\theta(\pi, \psi)$ from PGL_2 to \overline{SL}_2 ; $\theta(JL(\pi), \psi) \neq \theta(\pi, \psi)$.

伺い イヨト イヨト 三日

Generalization of Kohnen-Zagier, (with M.Baruch) Given π of PGL_2 , let $\tilde{\pi} = \theta(\pi, \psi)$ of \overline{SL}_2 . For $\tilde{\varphi}$ in $\tilde{\pi}$, its ψ -th Whittaker (Fourier) coefficient satisfies

$$|W^\psi(ilde arphi)|^2/\langle ilde arphi, ilde arphi
angle \sim L(\pi, rac{1}{2})/L(\pi, 1, {\it sym}^2).$$

ヨット イヨット イヨッ

Generalization of Kohnen-Zagier, (with M.Baruch) Given π of PGL_2 , let $\tilde{\pi} = \theta(\pi, \psi)$ of \overline{SL}_2 . For $\tilde{\varphi}$ in $\tilde{\pi}$, its ψ -th Whittaker (Fourier) coefficient satisfies

$$|W^\psi(ilde arphi)|^2/\langle ilde arphi, ilde arphi
angle \sim L(\pi, rac{1}{2})/L(\pi, 1, {\it sym}^2).$$

Remark: Similar equality is expected to hold for $\tilde{\pi}$ cuspidal representation of \overline{Sp}_{2n} .

ゆ く き と く き と

Generalization of Kohnen-Zagier, (with M.Baruch) Given π of PGL_2 , let $\tilde{\pi} = \theta(\pi, \psi)$ of \overline{SL}_2 . For $\tilde{\varphi}$ in $\tilde{\pi}$, its ψ -th Whittaker (Fourier) coefficient satisfies

$$|W^\psi(ilde arphi)|^2/\langle ilde arphi, ilde arphi
angle \sim L(\pi, rac{1}{2})/L(\pi, 1, {\it sym}^2).$$

Remark: Similar equality is expected to hold for $\tilde{\pi}$ cuspidal representation of \overline{Sp}_{2n} . Apply the identity to $\tilde{\pi}^D := \theta(\pi \otimes \chi_D, \psi^D)$, $(\psi^D(x) = \psi(x/D))$, we get for $\tilde{\varphi} \in \tilde{\pi}^D$

$$|W^{\psi^D}(\tilde{\varphi})|^2 \sim L(\pi \otimes \chi_D, \frac{1}{2})/L(\pi, 1, sym^2).$$

For $\pi \leftrightarrow f$ in our situation, Waldspurger shows: When D < 0 and $\left(\frac{D}{p}\right) = w_p = \pm 1$, $\theta(\pi \otimes \chi_D, \psi^D)$ is a certain representation $\tilde{\pi}$.

 $\tilde{\pi} = \theta(JL(\pi), \psi)$ when $L(f, 1, 1) \neq 0$.

ヨット イヨット イヨッ

For $\pi \leftrightarrow f$ in our situation, Waldspurger shows: When D < 0 and $\left(\frac{D}{p}\right) = w_p = \pm 1$, $\theta(\pi \otimes \chi_D, \psi^D)$ is a certain representation $\tilde{\pi}$. $\tilde{\pi} = \theta(JL(\pi), \psi)$ when $L(f, 1, 1) \neq 0$. When D > 0 and $\left(\frac{D}{p}\right) = -w_p$, $\theta(\pi \otimes \chi_D, \psi^D)$ is another representation $\tilde{\pi}'$ of \overline{SL}_2 , when $L(f, 1, 1) \neq 0$, $\tilde{\pi}' = \theta(\pi, \psi)$.

Explicit formula, case D > 0

Fix an odd character of $(Z/p)^*$ and extend it uniquely to an even character χ of $(Z/4p)^*$. There is a unique g'(z) in $S_{3/2}(4p^2, \chi)$, with $T_{l^2}g'/g' = T_l(f)/f$, $(l \neq p)$ and in Kohnen space (c'(n) = 0 if $(-1)^{k+1}n \equiv 2, 3 \mod 4)$. Moreover when D > 0 and $(\frac{D}{p}) = -w_p$ we have (k = 1)

$$\kappa rac{|c(|D|)|^2}{\langle g,g
angle} = rac{L(f,D,k)}{\langle f,f
angle} |D|^{k-1/2} rac{(k-1)!}{\pi^k}.$$

with $\kappa = \frac{p+1}{2p}$.

伺下 イヨト イヨト

Explicit formula, case D > 0

Fix an odd character of $(Z/p)^*$ and extend it uniquely to an even character χ of $(Z/4p)^*$. There is a unique g'(z) in $S_{3/2}(4p^2, \chi)$, with $T_{l^2}g'/g' = T_l(f)/f$, $(l \neq p)$ and in Kohnen space (c'(n) = 0 if $(-1)^{k+1}n \equiv 2, 3 \mod 4)$. Moreover when D > 0 and $(\frac{D}{p}) = -w_p$ we have (k = 1)

$$\kappa \frac{|c(|D|)|^2}{\langle g,g \rangle} = \frac{L(f,D,k)}{\langle f,f \rangle} |D|^{k-1/2} \frac{(k-1)!}{\pi^k}.$$

with $\kappa = \frac{p+1}{2p}$. Remark: the local component at p of $\tilde{\pi}'$ is a supercuspidal representation (the odd Weil representation), thus g'(z) has a larger level. (the local component at p of $\tilde{\pi}$ is a special representation.)

▲圖▶ ▲屋▶ ▲屋▶

Explicit formula, case D > 0

Fix an odd character of $(Z/p)^*$ and extend it uniquely to an even character χ of $(Z/4p)^*$. There is a unique g'(z) in $S_{3/2}(4p^2, \chi)$, with $T_{l^2}g'/g' = T_l(f)/f$, $(l \neq p)$ and in Kohnen space (c'(n) = 0 if $(-1)^{k+1}n \equiv 2, 3 \mod 4)$. Moreover when D > 0 and $(\frac{D}{p}) = -w_p$ we have (k = 1)

$$\kappa \frac{|c(|D|)|^2}{\langle g,g \rangle} = \frac{L(f,D,k)}{\langle f,f \rangle} |D|^{k-1/2} \frac{(k-1)!}{\pi^k}.$$

with $\kappa = \frac{p+1}{2p}$. Remark: the local component at p of $\tilde{\pi}'$ is a supercuspidal representation (the odd Weil representation), thus g'(z) has a larger level. (the local component at p of $\tilde{\pi}$ is a special representation.)

Remark: p|D case, use g(z), change κ from 1/2 to 1.

Construction of g(z) and g'(z): (with Tornaria and Rodriguez-Villegas) Both $\tilde{\pi}$ and $\tilde{\pi}'$ has the form $\theta(JL(\pi) \otimes \chi_D, \psi^D)$ for some D. We pick a I fundamental discriminant such that $\pm I$ is a prime, so that $L(\pi \otimes \chi_I, \frac{1}{2}) \neq 0$, then $\theta(JL(\pi) \otimes \chi_I, \psi^I) \neq 0$ and is equal to $\tilde{\pi}$ when I > 0, or $\tilde{\pi}'$ when I < 0. Let $\varphi = \Theta(e_f(\chi_I \circ \mathcal{N}), \phi, \psi^I)$ for a suitable ϕ . Construction of g(z) and g'(z): (with Tornaria and Rodriguez-Villegas) Both $\tilde{\pi}$ and $\tilde{\pi}'$ has the form $\theta(JL(\pi) \otimes \chi_D, \psi^D)$ for some D. We pick a *I* fundamental discriminant such that $\pm I$ is a prime, so that $L(\pi \otimes \chi_l, \frac{1}{2}) \neq 0$, then $\theta(JL(\pi) \otimes \chi_l, \psi') \neq 0$ and is equal to $\tilde{\pi}$ when l > 0, or $\tilde{\pi}'$ when l < 0. Let $\varphi = \Theta(e_f(\chi_I \circ \mathcal{N}), \phi, \psi')$ for a suitable ϕ . At v = p, $JL(\pi)_v \otimes \chi_l$ is trivial when l > 0 and a nontrivial one-dimensional representation when l < 0 (with our assumption $L(\pi \otimes \chi_I, \frac{1}{2}) \neq 0$).

Choice of
$$\phi: \phi = \otimes \phi_v$$
 as follows
• At $v \neq 2, \pm l, p, \infty, \phi_v$ is the characteristic function of
 $B^0(\mathbb{Q}_v) \cap R_v$.
• At $v = \infty, \phi_\infty(b) = e^{-\pi N b}$.
• At $v = 2, \phi_2$ is the characteristic function of
 $(1 + 2 * GL_2(\mathbb{Z}_2)) \cap B^0(\mathbb{Q}_2)$.
• At $v = \pm l, \phi_l(b) = 0$ unless $b = h^{-1} \begin{pmatrix} l \\ 1 \end{pmatrix} h$ with h is
in $GL_2(\mathbb{Z}_l)$, where $\phi_l(b) := \chi_l(\det h)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• At v = p, $B^0(\mathbb{Q}_p) = \{\begin{pmatrix} x\tau & py \\ \overline{y} & -x\tau \end{pmatrix}\}$ where $x \in \mathbb{Q}_p$, $y \in \mathbb{Q}_p(\tau)$ the unramified quadratic extension of \mathbb{Q}_p . Let ϕ_p be the characteristic function of $B^0(\mathbb{Q}_p) \cap R_p$ to get g(z). To get g'(z), let $\phi_p(b) = \chi(x)$ when x and y are integral, and 0 otherwise. χ is an odd character of $(\mathbb{Z}/p)^*$.

通 とう ほう とう マン・

Generalization of Gross's construction/formula

Let

$$\Theta_I[I_i] := rac{1}{2} \sum_{b \in S_i^0} \omega_{i,l}(b) \omega_{i,p}(b) e(\mathcal{N}b z/l).$$

(The choice of ϕ_p and ϕ_l results in weight functions $\omega_{i,l}(b)$ and $\omega_{i,p}(b)$.) Then g(z) or $g'(z) = \sum_i \Theta_l[I_i]e_f[I_i]$.

• • = • • = •

Generalization of Gross's construction/formula

Let

$$\Theta_{I}[I_{i}] := \frac{1}{2} \sum_{b \in S_{i}^{0}} \omega_{i,I}(b) \omega_{i,p}(b) e(\mathcal{N}b z/I).$$

(The choice of ϕ_p and ϕ_l results in weight functions $\omega_{i,l}(b)$ and $\omega_{i,p}(b)$.) Then g(z) or $g'(z) = \sum_i \Theta_l[I_i]e_f[I_i]$. Moreover we have (when ID < 0):

$$L(f, I, 1)L(f, D, 1) = \frac{\langle f, f \rangle}{\langle e_f, e_f \rangle} \frac{|c(|D|)|^2}{\sqrt{|DI|}} \kappa$$

where $\kappa = 2$ when p|D and $\kappa = 1$ otherwise. This implies the construction gives nonzero forms. Proof of the identity:

1. Theta correspondence between PB^* and SL_2 : if $\tilde{\varphi} = \Theta(e_f, \phi, \psi)$, then $W^D(\tilde{\varphi}) = P_{\xi}(\phi *_{\xi} e_f)$ where P_{ξ} is a toric period:

Let $T_{\xi} \subset PB^*$ be the centralizer of $\xi \in B^0$ with $N(\xi) = -D$.

$$P_{\xi}(\varphi) = \int_{T_{\xi}(\mathbb{Q}) \setminus T_{\xi}(\mathbb{A}_{\mathbb{Q}})} \varphi(h) \, dh$$

伺下 イヨト イヨト

Proof of the identity:

1. Theta correspondence between PB^* and SL_2 : if $\tilde{\varphi} = \Theta(e_f, \phi, \psi)$, then $W^D(\tilde{\varphi}) = P_{\xi}(\phi *_{\xi} e_f)$ where P_{ξ} is a toric period:

Let $T_{\xi} \subset PB^*$ be the centralizer of $\xi \in B^0$ with $N(\xi) = -D$.

$$\mathsf{P}_{\xi}(arphi) = \int_{\mathcal{T}_{\xi}(\mathbb{Q}) \setminus \mathcal{T}_{\xi}(\mathbb{A}_{\mathbb{Q}})} arphi(h) \, dh.$$

2. Waldspurger's formula for toric period: $|P_{\xi}(\phi *_{\xi} e_{f})|^{2} \sim |P_{\xi}(e_{f})|^{2} \sim L(\pi \otimes \chi_{D}, 1)L(\pi, 1)/L(\pi, Ad, 1).$ Local calculations gives the identity.

周 トレイモト イモト

Generalizations:

1. Higher weight: need to introduce a weight function (a polynomial) at infinity. Example by Rossum-Tornaria.

向下 イヨト イヨト

Generalizations:

1. Higher weight: need to introduce a weight function (a polynomial) at infinity. Example by Rossum-Tornaria. 2. Composite level case: When level is odd, I showed there exists uniquely determined set of $g_{\pm,m}$, *m* is a class modulo $N' = \prod_{p|N} p$. The Fourier coefficients of these forms (for $\Gamma_1(4N^2)$) gives L(f, D, k). Some examples have been constructed by Pacetti-Tornaria, same weight function can be used.

伺下 イヨト イヨト

Generalizations:

1. Higher weight: need to introduce a weight function (a polynomial) at infinity. Example by Rossum-Tornaria. 2. Composite level case: When level is odd, I showed there exists uniquely determined set of $g_{\pm,m}$, *m* is a class modulo $N' = \prod_{p|N} p$. The Fourier coefficients of these forms (for $\Gamma_1(4N^2)$) gives L(f, D, k). Some examples have been constructed by Pacetti-Tornaria, same weight function can be used.

3. Hilbert modular form case. Example of e_f is constructed by Dembelé.

伺下 イヨト イヨト