Computation of central values of L-functions

Zhengyu Mao
Rutgers - Newark

08/24/2012 at Jeju

The Problem

Let $f(z)=\sum_{n=1}^{\infty} a_{n} e(n z)$ be a new form of weight $2 k$, (e(z):= $\left.e^{2 \pi i}\right)$
D a fundamental discriminant,
Define

$$
L(f, D, s):=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}\left(\frac{D}{n}\right)
$$

The Problem

Let $f(z)=\sum_{n=1}^{\infty} a_{n} e(n z)$ be a new form of weight $2 k$, (e $\left.(z):=e^{2 \pi i z}\right)$
D a fundamental discriminant,
Define

$$
L(f, D, s):=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}\left(\frac{D}{n}\right) .
$$

Function equation: $L(f, D, s) \leftrightarrow L(f, D, 2 k-s)$.
We are interested in computing the values $L(f, D, k)$.

The Problem

Let $f(z)=\sum_{n=1}^{\infty} a_{n} e(n z)$ be a new form of weight $2 k$, (e $\left.(z):=e^{2 \pi i z}\right)$
D a fundamental discriminant,
Define

$$
L(f, D, s):=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}\left(\frac{D}{n}\right) .
$$

Function equation: $L(f, D, s) \leftrightarrow L(f, D, 2 k-s)$.
We are interested in computing the values $L(f, D, k)$.
Possible method: use approximate function equation-estimation by a finite sum.

The Problem

Let $f(z)=\sum_{n=1}^{\infty} a_{n} e(n z)$ be a new form of weight $2 k$, (e $\left.(z):=e^{2 \pi i z}\right)$
D a fundamental discriminant,
Define

$$
L(f, D, s):=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}\left(\frac{D}{n}\right) .
$$

Function equation: $L(f, D, s) \leftrightarrow L(f, D, 2 k-s)$.
We are interested in computing the values $L(f, D, k)$.
Possible method: use approximate function equation-estimation by a finite sum.
There is more efficient method in this case.

The method discussed here is through Shimura correspondence.
$f(z) \leftrightarrow g(z)=\sum_{n=1}^{\infty} c(n) e(n z)$ a weight $k+\frac{1}{2}$ cusp form.

The method discussed here is through Shimura correspondence. $f(z) \leftrightarrow g(z)=\sum_{n=1}^{\infty} c(n) e(n z)$ a weight $k+\frac{1}{2}$ cusp form. Waldspurger: there is a relation between $L(f, D, k)$ from $c(|D|)$.

The method discussed here is through Shimura correspondence. $f(z) \leftrightarrow g(z)=\sum_{n=1}^{\infty} c(n) e(n z)$ a weight $k+\frac{1}{2}$ cusp form. Waldspurger: there is a relation between $L(f, D, k)$ from $c(|D|)$.
The question becomes:

- explicate the relation.
- compute $c(n)$.

Kohnen-Zagier Formula

Explicit relation between L-value and Fourier coefficient Assume f is of level N odd and square free. Then there is a unique (up to multiple) g of level $4 N$, in the Kohnen space (meaning $c(n)=0$ if $\left.(-1)^{k} n \equiv 2,3 \bmod 4\right)$, satisfying ($p \times N$) $T_{p^{2}} g / g=\left(\frac{(-1)^{k}}{p}\right) T_{p} f / f$.
Moreover when $(-1)^{k} D>0$ and $\left(\frac{D}{p}\right)=w_{p}= \pm 1$ the eigenvalue for Atkin-Lerner involution:

$$
\kappa \frac{|c(|D|)|^{2}}{\langle g, g\rangle}=\frac{L(f, D, k)}{\langle f, f\rangle}|D|^{k-1 / 2} \frac{(k-1)!}{\pi^{k}} .
$$

where $\kappa=2^{-\nu(N)}, \nu(N)$ being number of prime factors of N. Remark: When $k=1, N=p$ odd, the formula gives a relation for all $D<0$ such that $(p, D)=1$.

Gross's construction

Gross's construction of $g(z)$ when $k=1, N=p$ odd

Gross's construction

Gross's construction of $g(z)$ when $k=1, N=p$ odd B: quaternion algebra ramified at ∞ and p.
R: fixed maximal order
l_{i} : representative of right ideal classes.
Construction of $\Theta_{1}\left[l_{i}\right]$:

Gross's construction

Gross's construction of $g(z)$ when $k=1, N=p$ odd
B: quaternion algebra ramified at ∞ and p.
R: fixed maximal order
l_{i} : representative of right ideal classes.
Construction of $\Theta_{1}\left[l_{]}\right]$:
R_{i} left order of $l_{i}:\left\{b: b l_{i} \subset l_{i}\right\}$.
$S_{i}^{0}=\left\{b \in Z+2 R_{i}: \operatorname{Tr} b=0\right\}$
$\Theta_{1}\left[l_{i}\right]:=\frac{1}{2} \sum_{b \in S_{i}^{0}} e(\mathcal{N} b z)$.
These are weight $3 / 2$ forms of level 4 p. The Fourier coefficients of theta series are easy to compute. (They are integers).

Jacquet-Langlands correspondence: $f \mapsto e_{f}$ a function on $B^{*}(\mathbb{Q}) \backslash B^{*}\left(\mathbb{A}_{\mathbb{Q}}\right) / B_{\infty}^{*} R^{*}\left(\mathbb{Q}_{f}\right)$.
e_{f} can be considered as a function $e_{f}\left[I_{i}\right]$.

Jacquet-Langlands correspondence: $f \mapsto e_{f}$ a function on $B^{*}(\mathbb{Q}) \backslash B^{*}\left(\mathbb{A}_{\mathbb{Q}}\right) / B_{\infty}^{*} R^{*}\left(\mathbb{Q}_{f}\right)$.
e_{f} can be considered as a function $e_{f}\left[I_{i}\right]$.
When $L(f, 1,1) \neq 0, g(z)=\sum_{i} \Theta_{1}\left[I_{i}\right] e_{f}\left[I_{i}\right]$.

Jacquet-Langlands correspondence: $f \mapsto e_{f}$ a function on $B^{*}(\mathbb{Q}) \backslash B^{*}\left(\mathbb{A}_{\mathbb{Q}}\right) / B_{\infty}^{*} R^{*}\left(\mathbb{Q}_{f}\right)$.
e_{f} can be considered as a function $e_{f}\left[I_{i}\right]$.
When $L(f, 1,1) \neq 0, g(z)=\sum_{i} \Theta_{1}\left[I_{i}\right] e_{f}\left[l_{i}\right]$.
(When $L(f, 1,1)=0$ the above sum vanishes).

Jacquet-Langlands correspondence: $f \mapsto e_{f}$ a function on $B^{*}(\mathbb{Q}) \backslash B^{*}\left(\mathbb{A}_{\mathbb{Q}}\right) / B_{\infty}^{*} R^{*}\left(\mathbb{Q}_{f}\right)$.
e_{f} can be considered as a function $e_{f}\left[I_{i}\right]$.
When $L(f, 1,1) \neq 0, g(z)=\sum_{i} \Theta_{1}\left[l_{i}\right] e_{f}\left[I_{i}\right]$.
(When $L(f, 1,1)=0$ the above sum vanishes).
Gross: (when $D<0$ and $(D, p)=1$)

$$
L(f, 1,1) L(f, D, 1)=\frac{\langle f, f\rangle}{\left\langle e_{f}, e_{f}\right\rangle} \frac{|c(|D|)|^{2}}{\sqrt{|D|}}
$$

Jacquet-Langlands correspondence: $f \mapsto e_{f}$ a function on $B^{*}(\mathbb{Q}) \backslash B^{*}\left(\mathbb{A}_{\mathbb{Q}}\right) / B_{\infty}^{*} R^{*}\left(\mathbb{Q}_{f}\right)$.
e_{f} can be considered as a function $e_{f}\left[I_{i}\right]$.
When $L(f, 1,1) \neq 0, g(z)=\sum_{i} \Theta_{1}\left[l_{i}\right] e_{f}\left[I_{i}\right]$.
(When $L(f, 1,1)=0$ the above sum vanishes).
Gross: (when $D<0$ and $(D, p)=1$)

$$
L(f, 1,1) L(f, D, 1)=\frac{\langle f, f\rangle}{\left\langle e_{f}, e_{f}\right\rangle} \frac{|c(|D|)|^{2}}{\sqrt{|D|}}
$$

Gross's construction computes $L(f, D, 1)$ when $L(f, 1,1) \neq 0$ and $D<0$ with $(D, p)=1$.

Explicate Jacquet-Langlands

Brandt matrices:
Let $M_{i j}=I_{i} I_{j}^{-1}=\left\{\sum a_{k} b_{k} \mid a_{k} \in I_{i}, b_{k} \in I_{j}^{-1}\right\}$. Then $M_{i j}$ is a right ideal of R_{j} whose left order is R_{i}.
Let $\mathcal{N} M_{i j}$ be the positive greatest common divisor of $\left\{\mathcal{N} b \mid b \in M_{i j}\right\}$.
Define theta series $(q:=e(z))$

$$
f_{i j}(z)=\frac{1}{2 w_{j}} \sum_{b \in M_{i j}} q^{N b / \mathcal{N} M_{i j}}=\frac{1}{2} \sum_{m \geq 0} B_{i j}(m) q^{n} .
$$

Here $2 w_{j}$ is number of units in R_{j}^{*}.

Then the Fourier coefficients $B_{i j}(m)$ give the entries of the Brandt matrix of degree m :

$$
B(m):=\left(B_{i j}(m)\right)_{1 \leq i, j \leq n} .
$$

(entries are integers)

Then the Fourier coefficients $B_{i j}(m)$ give the entries of the Brandt matrix of degree m :

$$
B(m):=\left(B_{i j}(m)\right)_{1 \leq i, j \leq n} .
$$

(entries are integers)
e_{f} is a common eigenvector of $B(m)$ with $B(I) e_{f} / e_{f}=T(I) f / f$.

Then the Fourier coefficients $B_{i j}(m)$ give the entries of the Brandt matrix of degree m :

$$
B(m):=\left(B_{i j}(m)\right)_{1 \leq i, j \leq n} .
$$

(entries are integers)
e_{f} is a common eigenvector of $B(m)$ with $B(I) e_{f} / e_{f}=T(I) f / f$.
Remark: can write f as a linear combination of theta series using this procedure.

Theta correspondence

Gross's construction, another description:
$f \xrightarrow{J-L} e_{f}$ is a theta correspondence between $G L_{2}=G S p_{2}$ and $B^{*} \times B^{*}=G O(4)$ (Shimizu correspondence)
$e_{f} \mapsto \Theta\left(e_{f}\right)$ is a theta correspondence between $P B^{*}=O(3)$ and $\overline{S L}_{2}$. (Waldspurger)

Theta correspondence

Gross's construction, another description:
$f \xrightarrow{J-L} e_{f}$ is a theta correspondence between $G L_{2}=G S p_{2}$ and $B^{*} \times B^{*}=G O(4)$ (Shimizu correspondence)
$e_{f} \mapsto \Theta\left(e_{f}\right)$ is a theta correspondence between $P B^{*}=O(3)$ and $\overline{S L}_{2}$. (Waldspurger)
ψ : nontrivial character of $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$
ω_{ψ} : Weil representation of $P B^{*} \times \overline{S L}_{2}$ acting on $\mathcal{S}\left(B^{0}\right)$. (B^{0} the set of elements in B with trace 0).
For $\phi \in \mathcal{S}\left(B^{0}\right), b \in P B^{*}, \sigma \in \overline{S L}_{2}$:

$$
\theta(b, \sigma ; \phi, \psi)=\sum_{x \in B^{0}(\mathbb{Q})} \omega_{\psi}(b, \sigma) \phi(x) .
$$

Then for some choice of ϕ

$$
\Theta\left(e_{f}\right)=\Theta\left(e_{f}, \phi, \psi\right)=\int_{P B^{*}(\mathbb{Q}) \backslash P B^{*}\left(\mathbb{A}_{\mathbb{Q}}\right)} e_{f}(b) \theta(b, ; \phi, \psi) d b
$$

Choice of $\phi: \phi=\otimes \phi_{v}$ as follows

- At $v \neq 2, \infty, \phi_{v}$ is the characteristic function of $B^{0}\left(\mathbb{Q}_{v}\right) \cap R_{v}$.
- At $v=\infty, \phi_{\infty}(b)=e^{-\pi \mathcal{N} b}$.
- At $v=2, \phi_{2}$ is the characteristic function of $\left(1+2 * G L_{2}\left(\mathbb{Z}_{2}\right)\right) \cap B^{0}\left(\mathbb{Q}_{2}\right)$.

Waldspurger: If $\pi \leftrightarrow f$, then $\theta(J L(\pi), \psi) \neq 0$ if and only if $L(f, 1,1) \neq 0$.
In particular if $L(f, 1,1)=0$, the above construction fails to give $g(z)$.

Waldspurger: If $\pi \leftrightarrow f$, then $\theta(J L(\pi), \psi) \neq 0$ if and only if $L(f, 1,1) \neq 0$.
In particular if $L(f, 1,1)=0$, the above construction fails to give $g(z)$.
Goal: generalize this to cases $D>0$ or $p \mid D$ or $L(f, 1,1)=0$.

Waldspurger: If $\pi \leftrightarrow f$, then $\theta(J L(\pi), \psi) \neq 0$ if and only if $L(f, 1,1) \neq 0$.
In particular if $L(f, 1,1)=0$, the above construction fails to give $g(z)$.
Goal: generalize this to cases $D>0$ or $p \mid D$ or $L(f, 1,1)=0$. Remark: there is also a theta correspondence $\theta(\pi, \psi)$ from $P G L_{2}$ to $\overline{S L}_{2} ; \theta(J L(\pi), \psi) \neq \theta(\pi, \psi)$.

Generalization of Kohnen-Zagier, (with M.Baruch)
Given π of $P G L_{2}$, let $\tilde{\pi}=\theta(\pi, \psi)$ of $\overline{S L}_{2}$. For $\tilde{\varphi}$ in $\tilde{\pi}$, its ψ-th Whittaker (Fourier) coefficient satisfies

$$
\left|W^{\psi}(\tilde{\varphi})\right|^{2} /\langle\tilde{\varphi}, \tilde{\varphi}\rangle \sim L\left(\pi, \frac{1}{2}\right) / L\left(\pi, 1, s y m^{2}\right) .
$$

Generalization of Kohnen-Zagier, (with M.Baruch)
Given π of $P G L_{2}$, let $\tilde{\pi}=\theta(\pi, \psi)$ of $\overline{S L}_{2}$. For $\tilde{\varphi}$ in $\tilde{\pi}$, its ψ-th Whittaker (Fourier) coefficient satisfies

$$
\left|W^{\psi}(\tilde{\varphi})\right|^{2} /\langle\tilde{\varphi}, \tilde{\varphi}\rangle \sim L\left(\pi, \frac{1}{2}\right) / L\left(\pi, 1, \text { sym }^{2}\right) .
$$

Remark: Similar equality is expected to hold for $\tilde{\pi}$ cuspidal representation of $\overline{S p}_{2 n}$.

Generalization of Kohnen-Zagier, (with M.Baruch)
Given π of $P G L_{2}$, let $\tilde{\pi}=\theta(\pi, \psi)$ of $\overline{S L}_{2}$. For $\tilde{\varphi}$ in $\tilde{\pi}$, its ψ-th Whittaker (Fourier) coefficient satisfies

$$
\left|W^{\psi}(\tilde{\varphi})\right|^{2} /\langle\tilde{\varphi}, \tilde{\varphi}\rangle \sim L\left(\pi, \frac{1}{2}\right) / L\left(\pi, 1, s y m^{2}\right) .
$$

Remark: Similar equality is expected to hold for $\tilde{\pi}$ cuspidal representation of $\overline{S p}_{2 n}$.
Apply the identity to $\tilde{\pi}^{D}:=\theta\left(\pi \otimes \chi_{D}, \psi^{D}\right)$, ($\psi^{D}(x)=\psi(x / D)$), we get for $\tilde{\varphi} \in \tilde{\pi}^{D}$

$$
\left|W^{\psi^{D}}(\tilde{\varphi})\right|^{2} \sim L\left(\pi \otimes \chi_{D}, \frac{1}{2}\right) / L\left(\pi, 1, \text { sym }^{2}\right) .
$$

For $\pi \leftrightarrow f$ in our situation, Waldspurger shows:
When $D<0$ and $\left(\frac{D}{p}\right)=w_{p}= \pm 1, \theta\left(\pi \otimes \chi_{D}, \psi^{D}\right)$ is a certain representation $\tilde{\pi}$.
$\tilde{\pi}=\theta(J L(\pi), \psi)$ when $L(f, 1,1) \neq 0$.

For $\pi \leftrightarrow f$ in our situation, Waldspurger shows:
When $D<0$ and $\left(\frac{D}{p}\right)=w_{p}= \pm 1, \theta\left(\pi \otimes \chi_{D}, \psi^{D}\right)$ is a certain representation $\tilde{\pi}$.
$\tilde{\pi}=\theta(J L(\pi), \psi)$ when $L(f, 1,1) \neq 0$.
When $D>0$ and $\left(\frac{D}{p}\right)=-w_{p}, \theta\left(\pi \otimes \chi_{D}, \psi^{D}\right)$ is another representation $\tilde{\pi}^{\prime}$ of $\overline{S L}_{2}$,
when $L(f, 1,1) \neq 0, \tilde{\pi}^{\prime}=\theta(\pi, \psi)$.

Explicit formula, case $D>0$

Fix an odd character of $(Z / p)^{*}$ and extend it uniquely to an even character χ of $(Z / 4 p)^{*}$. There is a unique $g^{\prime}(z)$ in $S_{3 / 2}\left(4 p^{2}, \chi\right)$, with $T_{1^{2}} g^{\prime} / g^{\prime}=T_{I}(f) / f,(I \neq p)$ and in Kohnen space $\left(c^{\prime}(n)=0\right.$ if $\left.(-1)^{k+1} n \equiv 2,3 \bmod 4\right)$. Moreover when $D>0$ and $\left(\frac{D}{p}\right)=-w_{p}$ we have $(k=1)$

$$
\kappa \frac{|c(|D|)|^{2}}{\langle g, g\rangle}=\frac{L(f, D, k)}{\langle f, f\rangle}|D|^{k-1 / 2} \frac{(k-1)!}{\pi^{k}}
$$

with $\kappa=\frac{p+1}{2 p}$.

Explicit formula, case $D>0$

Fix an odd character of $(Z / p)^{*}$ and extend it uniquely to an even character χ of $(Z / 4 p)^{*}$. There is a unique $g^{\prime}(z)$ in $S_{3 / 2}\left(4 p^{2}, \chi\right)$, with $T_{1^{2}} g^{\prime} / g^{\prime}=T_{l}(f) / f,(I \neq p)$ and in Kohnen space $\left(c^{\prime}(n)=0\right.$ if $\left.(-1)^{k+1} n \equiv 2,3 \bmod 4\right)$. Moreover when $D>0$ and $\left(\frac{D}{p}\right)=-w_{p}$ we have $(k=1)$

$$
\kappa \frac{|c(|D|)|^{2}}{\langle g, g\rangle}=\frac{L(f, D, k)}{\langle f, f\rangle}|D|^{k-1 / 2} \frac{(k-1)!}{\pi^{k}}
$$

with $\kappa=\frac{p+1}{2 p}$.
Remark: the local component at p of $\tilde{\pi}^{\prime}$ is a supercuspidal representation (the odd Weil representation), thus $g^{\prime}(z)$ has a larger level. (the local component at p of $\tilde{\pi}$ is a special representation.)

Explicit formula, case $D>0$

Fix an odd character of $(Z / p)^{*}$ and extend it uniquely to an even character χ of $(Z / 4 p)^{*}$. There is a unique $g^{\prime}(z)$ in $S_{3 / 2}\left(4 p^{2}, \chi\right)$, with $T_{1^{2}} g^{\prime} / g^{\prime}=T_{l}(f) / f,(I \neq p)$ and in Kohnen space $\left(c^{\prime}(n)=0\right.$ if $\left.(-1)^{k+1} n \equiv 2,3 \bmod 4\right)$. Moreover when $D>0$ and $\left(\frac{D}{p}\right)=-w_{p}$ we have $(k=1)$

$$
\kappa \frac{|c(|D|)|^{2}}{\langle g, g\rangle}=\frac{L(f, D, k)}{\langle f, f\rangle}|D|^{k-1 / 2} \frac{(k-1)!}{\pi^{k}}
$$

with $\kappa=\frac{p+1}{2 p}$.
Remark: the local component at p of $\tilde{\pi}^{\prime}$ is a supercuspidal representation (the odd Weil representation), thus $g^{\prime}(z)$ has a larger level. (the local component at p of $\tilde{\pi}$ is a special representation.)
Remark: $p \mid D$ case, use $g(z)$, change κ from $1 / 2$ to 1 .

Construction of $g(z)$ and $g^{\prime}(z)$: (with Tornaria and Rodriguez-Villegas)
Both $\tilde{\pi}$ and $\tilde{\pi}^{\prime}$ has the form $\theta\left(J L(\pi) \otimes \chi_{D}, \psi^{D}\right)$ for some D. We pick a I fundamental discriminant such that $\pm l$ is a prime, so that $L\left(\pi \otimes \chi_{I}, \frac{1}{2}\right) \neq 0$, then $\theta\left(J L(\pi) \otimes \chi_{I}, \psi^{\prime}\right) \neq 0$ and is equal to $\tilde{\pi}$ when $I>0$, or $\tilde{\pi}^{\prime}$ when $I<0$.
Let $\varphi=\Theta\left(e_{f}\left(\chi_{\prime} \circ \mathcal{N}\right), \phi, \psi^{\prime}\right)$ for a suitable ϕ.

Construction of $g(z)$ and $g^{\prime}(z)$: (with Tornaria and Rodriguez-Villegas)
Both $\tilde{\pi}$ and $\tilde{\pi}^{\prime}$ has the form $\theta\left(J L(\pi) \otimes \chi_{D}, \psi^{D}\right)$ for some D. We pick a I fundamental discriminant such that $\pm /$ is a prime, so that $L\left(\pi \otimes \chi_{I}, \frac{1}{2}\right) \neq 0$, then $\theta\left(J L(\pi) \otimes \chi_{I}, \psi^{\prime}\right) \neq 0$ and is equal to $\tilde{\pi}$ when $I>0$, or $\tilde{\pi}^{\prime}$ when $I<0$.
Let $\varphi=\Theta\left(e_{f}\left(\chi_{l} \circ \mathcal{N}\right), \phi, \psi^{\prime}\right)$ for a suitable ϕ.
At $v=p, J L(\pi)_{v} \otimes \chi_{I}$ is trivial when $I>0$ and a nontrivial one-dimensional representation when $I<0$ (with our assumption $\left.L\left(\pi \otimes \chi_{l}, \frac{1}{2}\right) \neq 0\right)$.

Choice of $\phi: \phi=\otimes \phi_{v}$ as follows

- At $v \neq 2, \pm I, p, \infty, \phi_{v}$ is the characteristic function of $B^{0}\left(\mathbb{Q}_{v}\right) \cap R_{v}$.
- At $v=\infty, \phi_{\infty}(b)=e^{-\pi \mathcal{N} b}$.
- At $v=2, \phi_{2}$ is the characteristic function of $\left(1+2 * G L_{2}\left(\mathbb{Z}_{2}\right)\right) \cap B^{0}\left(\mathbb{Q}_{2}\right)$.
- At $v= \pm l, \phi_{l}(b)=0$ unless $b=h^{-1}\binom{l}{1} h$ with h is in $G L_{2}\left(\mathbb{Z}_{l}\right)$, where $\phi_{l}(b):=\chi_{l}(\operatorname{det} h)$.
- At $v=p, B^{0}\left(\mathbb{Q}_{p}\right)=\left\{\left(\begin{array}{cc}x \tau & p y \\ \bar{y} & -x \tau\end{array}\right)\right\}$ where $x \in \mathbb{Q}_{p}$, $y \in \mathbb{Q}_{p}(\tau)$ the unramified quadratic extension of \mathbb{Q}_{p}. Let ϕ_{p} be the characteristic function of $B^{0}\left(\mathbb{Q}_{p}\right) \cap R_{p}$ to get $g(z)$.
To get $g^{\prime}(z)$, let $\phi_{p}(b)=\chi(x)$ when x and y are integral, and 0 otherwise. χ is an odd character of $(\mathbb{Z} / p)^{*}$.

Generalization of Gross's construction/formula

Let

$$
\Theta_{l}\left[l_{i}\right]:=\frac{1}{2} \sum_{b \in S_{i}^{0}} \omega_{i, l}(b) \omega_{i, p}(b) e(\mathcal{N} b z / l)
$$

(The choice of ϕ_{p} and ϕ_{l} results in weight functions $\omega_{i, l}(b)$ and $\omega_{i, p}(b)$.)
Then $g(z)$ or $g^{\prime}(z)=\sum_{i} \Theta_{l}\left[l_{i}\right] e_{f}\left[l_{i}\right]$.

Generalization of Gross's construction/formula

Let

$$
\Theta_{l}\left[l_{i}\right]:=\frac{1}{2} \sum_{b \in S_{i}^{0}} \omega_{i, l}(b) \omega_{i, p}(b) e(\mathcal{N} b z / l)
$$

(The choice of ϕ_{p} and ϕ_{l} results in weight functions $\omega_{i, l}(b)$ and $\omega_{i, p}(b)$.)
Then $g(z)$ or $g^{\prime}(z)=\sum_{i} \Theta_{l}\left[I_{i}\right] e_{f}\left[I_{i}\right]$.
Moreover we have (when $I D<0$):

$$
L(f, I, 1) L(f, D, 1)=\frac{\langle f, f\rangle}{\left\langle e_{f}, e_{f}\right\rangle} \frac{|c(|D|)|^{2}}{\sqrt{|D I|}} \kappa
$$

where $\kappa=2$ when $p \mid D$ and $\kappa=1$ otherwise.
This implies the construction gives nonzero forms.

Proof of the identity:

1. Theta correspondence between $P B^{*}$ and $\overline{S L_{2}}$: if
$\tilde{\varphi}=\Theta\left(e_{f}, \phi, \psi\right)$, then $W^{D}(\tilde{\varphi})=P_{\xi}\left(\phi *_{\xi} e_{f}\right)$ where P_{ξ} is a toric period:
Let $T_{\xi} \subset P B^{*}$ be the centralizer of $\xi \in B^{0}$ with $N(\xi)=-D$.

$$
P_{\xi}(\varphi)=\int_{T_{\xi}(\mathbb{Q}) \backslash T_{\xi}\left(\mathbb{A}_{\mathbb{Q}}\right)} \varphi(h) d h .
$$

Proof of the identity:

1. Theta correspondence between $P B^{*}$ and $\overline{S L_{2}}$: if
$\tilde{\varphi}=\Theta\left(e_{f}, \phi, \psi\right)$, then $W^{D}(\tilde{\varphi})=P_{\xi}\left(\phi *_{\xi} e_{f}\right)$ where P_{ξ} is a toric period:
Let $T_{\xi} \subset P B^{*}$ be the centralizer of $\xi \in B^{0}$ with $N(\xi)=-D$.

$$
P_{\xi}(\varphi)=\int_{T_{\xi}(\mathbb{Q}) \backslash T_{\xi}\left(\mathbb{A}_{\mathbb{Q}}\right)} \varphi(h) d h .
$$

2. Waldspurger's formula for toric period:
$\left|P_{\xi}\left(\phi *_{\xi} e_{f}\right)\right|^{2} \sim\left|P_{\xi}\left(e_{f}\right)\right|^{2} \sim L\left(\pi \otimes \chi_{D}, 1\right) L(\pi, 1) / L(\pi, A d, 1)$.
Local calculations gives the identity.

Generalizations:

1. Higher weight: need to introduce a weight function (a polynomial) at infinity. Example by Rossum-Tornaria.

Generalizations:

1. Higher weight: need to introduce a weight function (a polynomial) at infinity. Example by Rossum-Tornaria.
2. Composite level case: When level is odd, I showed there exists uniquely determined set of $g_{ \pm, m}, m$ is a class modulo $N^{\prime}=\prod_{p \mid N} p$. The Fourier coefficients of these forms (for $\left.\Gamma_{1}\left(4 N^{2}\right)\right)$ gives $L(f, D, k)$. Some examples have been constructed by Pacetti-Tornaria, same weight function can be used.

Generalizations:

1. Higher weight: need to introduce a weight function (a polynomial) at infinity. Example by Rossum-Tornaria.
2. Composite level case: When level is odd, I showed there exists uniquely determined set of $g_{ \pm, m}, m$ is a class modulo $N^{\prime}=\prod_{p \mid N} p$. The Fourier coefficients of these forms (for $\Gamma_{1}\left(4 N^{2}\right)$) gives $L(f, D, k)$. Some examples have been constructed by Pacetti-Tornaria, same weight function can be used.
3. Hilbert modular form case. Example of e_{f} is constructed by Dembelé.
